
The SLam Calculus�

Programming with Secrecy and Integrity

Nevin Heintze

Bell Laboratories

nch�bell�labs�com

Jon G� Riecke

Bell Laboratories

riecke�bell�labs�com

Abstract

The SLam calculus is a typed ��calculus that maintains security information as well as type in�
formation� The type system propagates security information for each object in four forms� the object�s
creators and readers� and the object�s indirect creators and readers �i�e�� those agents who� through �ow�
of�control or the actions of other agents� can in�uence or be in�uenced by the content of the object�� We
prove that the type system prevents security violations and give some examples of its power�

� Introduction

How do we build a system that manipulates and stores information whose secrecy and integrity must be
preserved� The information might� for example� contain employee salaries� tax information or social security
numbers� or it might involve data whose integrity is essential to global system security� such as the UNIX
�TM� �etc�passwd �le or a database of public keys�

One solution is to provide a secure persistent store that controls access to each location in the store� e�g��
it might maintain access control lists that specify who may read and write each location� However� this only
addresses part of the problem� it does not trace the security of information through computation� and hence
is easy to defeat� For example� a privileged user might write a program that reads a secret location and
copies it to an insecure location that everyone can read� Trust is central to the usability of this system� If
you share some secrets with someone� then you must trust their intentions and their competence� since they
may release secrets accidentally as a result of a programming error�

An alternative is to associate security with data objects instead of locations� and track security through
computation at runtime� To do this� each object must come equipped with security information that speci�es
access rights� i�e�� a capability� However� this is not enough� We must also track the �ow of information
as we build new objects from old� For example� if we have a secret string and concatenate it with another
string� then we must also treat the new string as secret� Such a scheme has two �aws� First� explicitly
tracing security information through computation is very expensive� Second� the system must guarantee
that security information is not forged� We can address these issues by statically approximating information
�ow� and by using a trusted run�time that only executes programs that have passed the static check� For
example� we can view a program as a black box so that its output is at least as secret as each of its inputs�
Similarly� we can view program output as having no higher integrity than each of its inputs� This approach
of tracing information �ow has been thoroughly explored in the security literature 	
� �� �� � ���

Unfortunately� in classic information �ow systems� data quickly �oats to the highest level of security�
For example� consider a program that takes as input a string x representing a user id and another string y

representing the user�s password� and whose output is some object z built from x and y� Then the security
level of the entire object z must be the security level appropriate for user passwords� even though the
password information may be only a small component of z� or may not appear at all�

In this paper� we investigate how assumptions at the programming language level can address this lim�
itation and provide �ne grained control of security� We focus on the role of strong typing� We assume
that all programs are compiled with a trusted compiler that enforces our type discipline� i�e�� there are no
�back�doors� for inserting and executing unchecked code and there are no operations for direct access and

�



modi�cation of raw memory locations� We also assume that the persistent store understands and preserves
the types of objects� For example� in UNIX the �etc�passwd �le is stored as a string� in our system� we
shall implement and store this data structure as a list of records where each record contains� e�g�� a user
name� user id� and password hash� By exposing this structure� we can attach di�erent levels of security to
the di�erent components of an object� and thereby express security information more accurately and �exibly�

We present a core functional programming language called the Secure Lambda Calculus �or SLam calcu�
lus�� The types of this language contain not only standard typing information� but also security information�
This security information takes four forms� readers� creators� indirect readers and indirect creators� Intu�
itively� an agent must be a reader of an object in order to inspect the object�s contents� An agent is a
creator of any object it constructs� An agent is an indirect reader of an object if it may be in�uenced by the
object�s contents� An agent is an indirect creator of an object if it may in�uence the object�s construction�
For example� consider the statement

if �x � ��� then y �� � else y �� ��

Here� partial information about x is available via variable y� If agent A can read y but not x� then A can still
�nd out partial information about x and so A is an indirect reader of x� If the statement itself were executed
by agent B� then B would require read access to x� B would also be a creator of y�s content� Moreover� if x
was created by a third agent C� then C would be an indirect creator of y�s content�

Readers and indirect readers together specify an object�s secrecy �who �nds out about the object��
whereas creators and indirect creators specify integrity �who is responsible for the object�� Readers and
creators together capture access control� while indirect readers and indirect creators capture information
�ow� In conjunction with higher�order functions and a rich underlying type structure �e�g�� records� sums��
these four security forms provide a very �exible basis for controlled sharing and distribution of information�
For example� higher�order functions can be used to build up complex capabilities� By specifying the set of
readers and�or indirect readers of these functions�where the ability to read the function is the right to apply
it�we can additionally restrict the capability so that it can only be shared by a speci�ed group of agents�
�Note that our assumptions ensure that all an agent can do with the function is apply it� in particular� there
is no way to open up a function and gain access to its closure or other internals��

Why is it convenient to have both access control and information �ow in the type system� To illustrate
the utility of having both� suppose we have just two security levels� H �high security� and L �low security��
and a type called users that is a list containing strings whose direct readers are H� and whose indirect readers
are L� If we ignore creators and indirect creators� and write direct readers before indirect readers� the type
de�nition might look something like this in a Standard ML�like syntax 	����

type users � �list �string	H	L�	L	L�

Now suppose we want to look up names in a value of type users� and return true if the name is in the list�
We might write the code as follows�

fun lookup �
��users� name � false � �bool	L	L�

� lookup ��x��rst��users� name �

if x � name

then true

else lookup rst name

Our type system guarantees that only high�security agents can write the lookup function� or indeed any code
that branches on the values of the strings in the list� Low�security agents can call the lookup function� but
cannot get direct access to the strings held in the list� Information �ows from the strings into the boolean
output� but since we have labeled the indirect readers of the strings to be low security� the program is still
type safe� If we had only indirect readers� the output of lookup would have to be a high�security boolean�
More generally� if an agent is an indirect reader of an object but not a direct reader� then any information
that agent �nds out about that object must be via another agent who is a direct reader� Readers determine
how much of an object is revealed to indirect readers� but they cannot reveal information to agents who are
not indirect readers� At one extreme� a �direct� reader can reveal all information about an object to the
indirect readers� We trust the object�s readers to reveal only appropriate information about the object to
indirect readers�

�



We present the SLam calculus in stages� In Section �� we de�ne the purely functional core of the SLam
calculus� restricting the security properties to reader and indirect�reader security� The operational semantics
explicitly checks for security errors� We prove that well�typed programs never cause security errors� and
hence the checks may be omitted� Sections 
 and � extend the core calculus with assignments �using an
e�ects�style extensions to the type system 	����� concurrency� and integrity� Section � concludes the paper
with a discussion of other work and limitations of the system�

The type soundness theorems provide a direct proof that our type system enforces reader and creator
security� However� the situation for indirect readers and indirect creators is less satisfactory� The operational
semantics tracks this security information through computation� but this part of the de�nition is quite
complex� What we seek is an independent con�rmation of the soundness of our de�nitions� For example� if
a global variable x has security information that says agent A is neither a reader nor indirect reader� then
agent A�s behavior should be independent of the value of x� No matter what value we give to x� A�s behavior
should not change� In the security literature� this property is called noninterference 	���� Borrowing ideas
from Reynolds 	���� we formalize this by using an equivalence relation to represent what agent A can know
about x �in this case nothing� so the equivalence relation relates all values�� and then check to see whether
A�s behavior respects this equivalence relation on x� We prove such a noninterference theorem for the core
calculus in Section � using a denotational argument� This style of proof� while common in the languages
literature� is novel to the security world� This proof technique seems to carry over to the extensions of the
basic calculus� The notion of noninterference is problematic in a concurrent setting� a problem we discuss
further in Section 
�

� The Core Calculus

We illustrate the core ideas of our calculus using a language with functions� recursion� tuples� and sums�
restricting the security properties to readers and indirect readers� We extend our treatment to a language
with assignment and concurrency in Section 
� and to creators and indirect creators in Section ��

��� Types and terms

The types of the SLam calculus essentially comprise those of a monomorphic type system�with products�
sums� and functions�in which each type is annotated with security properties� We could add booleans�
integers and strings� but the essential typing properties of these types are already covered by products and
sums� De�ne security properties �� types t� and secure types s by the grammar

� ��� �r� ir�

t ��� unit j �t� t� j �t� t� j �t� t�

s ��� �t� ��

where r �readers� and ir �indirect readers� range over some collection of basic security descriptions� For
example� a simple multi�level security system might have security descriptions L �low�� M �medium� and H
�high�� with ordering L vM v H � Alternatively� a UNIX�like security system would begin with a collection
of groups and users� and an ordering such that anything is less than root� and g v u if user u is in group
g� In general� we assume that r and ir range over some collection S of basic security descriptions with
ordering v� We assume �S�v� is a lattice �i�e�� a partially ordered set with meets� joins� a top element � and
bottom element ��� Higher in the lattice means �more secure�� � is the most secure element� Intuitively�
each element of S represents a set of agents or users� for this reason we refer to elements of S as security
groups� For the purposes of presenting our static type system� we assume that S is static �each element
represents a �xed set of agents�� This is unrealistic because security changes over time �e�g�� new users and
groups are added� users are added to and removed from groups�� We discuss this further in Section ��

We maintain the invariant that any security property �r� ir� satis�es ir v r� In other words� r should
be more restrictive �it represents a smaller set of agents� than ir� If a value v has security property �r� ir��
then only the agents described by r may directly read a value� and only agents in ir may �nd out �partial�
information about v� That is� r tracks access to an object� whereas ir tracks information �ow�






The SLam calculus is a call�by�value language� and hence terms are contain a set of values that represent
terminated computations� The sets of basic values and values are de�ned by the grammar

bv ��� �� j �inji v� j hv� vi j ��x � s� e�

v ��� bv�

The security properties on values describe which agents may read the object� and which agents may indirectly
depend on the value� The terms of the SLam calculus are given by the grammar

e ��� x j v j �inji e�� j he� ei� j �e e�r j �proji e�r j ��f � s� e� j �protectir e� j

�case e of inj��x�� e j inj��x�� e�r

The term ��f � s� e� de�nes a recursive function� and the term �protectir e� increases the security property
of a term� Bound and free variables are de�ned in the usual way� variables may be bound by �� �� and case�

The security group r appearing on the destructors�application� projection� or case�represents the
security group of the programmer of that code� It is the compiler�s job to check that the annotations on
programs are consistent with the author�s security� For example� the compiler must prevent arbitrary users
from writing programs with destructors annotated with root� As evaluation proceeds� terms with mixed
annotations arise� Note that root can write programs that can be run by anyone� but once started� can
access �les and data structures as root� Such a �setuid� program would be a function

f � ��x � �t� ������� body involving root annotations�������

Anyone can write an application �f v�r� because � v r� but the body runs at root and can access data that
r cannot access� When the application �f v�r is reduced� the resultant body will have v substituted for x� If
v is an abstraction� with destructors annotated r� the resultant body will mix r and root annotations�

��� Operational Semantics

The relation e � e� represents a single atomic action taken by an agent� The de�nition uses structured
operational semantics 	�
� via evaluation contexts 	��� The set of evaluation contexts is given by

E ��� 	�� j �E e�r j �v E�r j �proji E�r j �inji E�� j hE� ei� j hv� Ei� j �protectir E� j

�case E of inj��x�� e� j inj��x�� e��r

Note that this de�nes a left�to�right� call�by�value� deterministic reduction strategy�
The basic rules for the operational semantics appear in Table �� In the rules� we use an operation for

increasing the security properties on terms� given � � �r� ir�� � � ir� is the security property �r t ir�� irt ir���
Abusing notation� we extend this operation to values� bv� � ir denotes the value bv��ir� These rules reduce
simple redexes� The rules lift to arbitrary terms via the rule

e� e�

E	e�� E	e��

which shows how to reduce all terms except terms which have type or security errors� Note that the
operational semantics is essentially untyped� the types on bound variables� upon which the type checking
rules of the next section depend� are ignored during reduction� The security properties on values and
destructors are� of course� checked during reduction� this corresponds to checking� for instance� that a pair is
the value being taken apart by a projection� Note also that� after a value has been destructed� the indirect

readers of the value are used to increase the secrecy of the result �via protect�� This tracks information
�ow from the destructed value to the result�

��� Type System

The type system of the SLam calculus appears in Tables � and 
� The system includes subtyping and the
subsumption rule� The subtyping rules in Table � start from lifting the v relation on security groups to the

�



Table �� Operational Semantics�

���x � s� e�r�ir v�r� � �protectir e�v�x	� if r v r�

�proji hv�� v�i�r�ir��r� � �protectir vi� if r v r�

�case �injj v��r�ir� of inj��x�� e� j inj��x� � e��r� � �protectir ej �v�x	� if r v r�

��f � s� e� � e���x � s�� ���f � s� e� x�r��r�ir��f 	 if s 
 �s� � s�� �r� ir��
�protectir v� � v � ir

Table �� Subtyping Rules for Pure Functional Language�

s� � s� s� � s�
s� � s�

� � ��

�unit� �� � �unit� ���

� � �� si � s�i
��s� � s��� �� � ��s�� � s���� �

��
� � �� si � s�i

��s� � s��� �� � ��s�� � s���� �
��

� � �� s�� � s� s� � s��
��s� � s��� �� � ��s�� � s���� �

��

Table 
� Typing Rules for Pure Functional Language�

	V ar� �� x � s � x � s 	Unit� � � ��� � �unit� ��

	Sub�
� � e � s s � s�

� � e � s�
	Rec�

�� f � s � e � s
� � ��f � s� e� � s

s is a function type

	Lam�
�� x � s� � e � s�

� � ��x � s�� e�� � �s� � s�� ��
	App�

� � e � �s� � s�� �r� ir�� � � e� � s�
� � �e e��r� � s� � ir

r v r�

	Pair�
� � e� � s� � � e� � s�
� � he�� e�i� � �s� � s�� ��

	Proj�
� � e � �s� � s�� �r� ir��
� � �proji e�r� � si � ir

r v r�

	Inj�
� � e � si

� � �inji e�� � �s� � s�� ��
	Protect�

� � e � s
� � �protectir e� � s � ir

	Case�
� � e � �s� � s�� �r� ir�� �� x � si � ei � s

� � �case e of inj��x�� e� j inj��x�� e��r� � s � ir
r v r�

�



� relation on security properties� De�ne

�r� ir� � �r�� ir�� i� r v r�� ir v ir��

The subtyping rules formalize the idea that one may always increase the security property of a value�
The typing rules appear in Table 
� Abusing notation� we write �t� �� � ir to denote the secure type

�t� � � ir�� The rules for type�checking constructors are straightforward� For type�checking destructors� the
rules guarantee that the destructor has the permission to destruct the value �apply a function� project from
a pair� or branch on a sum�� Note that like the operational semantics� the security of the destructed value is
promoted to re�ect the indirect readers of the destructed value� This type system satis�es Subject Reduction
and Progress �see Appendix for proofs��

Theorem ��� �Subject Reduction� Suppose 	 � e � s and e� e�� Then 	 � e� � s�

Theorem ��� �Progress� Suppose 	 � e � s and e is not a value� Then there is a reduction e� e��

These theorems show that� for well�typed� closed expressions� one may omit the security checks in the
operational semantics without compromising the security of expressions�

The subject reduction result provides a fairly direct proof that our type system enforces reader security�
Objects are created with their reader annotation set to some speci�c security group and this annotation is
preserved throughout the program� Speci�cally� reader annotations may only be changed by protect� whose
e�ect is to increase security� i�e�� set more restrictive access to the object�

However� the situation for indirect readers is more subtle� For example� we would like to prove that
if x is a high security variable �with respect to indirect readers� and e is a low security expression that
contains x� then no matter what value we give to x� the resulting evaluation of e does not change �assuming
it terminates�� More generally� we want to show that if an expression e of low security has a high security
sub�expression� then we can arbitrarily change the high security sub�expression without changing the value
of e� However� this property does not hold in general� First� it does not hold if e evaluates to a value that
contains abstractions� Hence� we restrict the type of e so that it contains only unit� sums and products �call
these ground types�� Second� it does not hold if e evaluates to a value whose subcomponents have higher
security than e� Hence� we further restrict the type of e so that security properties decrease as we descend
into its type structure e�g�� ��unit� �L�L����unit� �L�L��� �H�H�� �call these transparent types�� To formally
state property� we shall use contexts� C	�� denotes a context �expression with a hole in it�� C	e� denotes the
expression obtained by �lling context C	�� with expression e� We also de�ne a special equivalence relation to
factor out termination issues� e 
 e� if whenever both expressions halt at values� the values �when stripped
of security information� are identical� We can now state�

Theorem ��� �Noninterference� Suppose 	 � e � �t� �r� ir��� 	 � C	e� � �t�� �r�� ir���� t� is a transparent

ground type and ir �v ir�� If e� is an expression where 	 � e� � �t� �r� ir��� then C	e� 
 C	e���

For simplicity� we have restricted this theorem to closed terms e� it can be generalized to open terms� The
proof uses a denotational semantics of the language and a logical�relations�style argument� and is given in
the Appendix� The proof is particularly simple� especially when compared with other proofs based on direct
reasoning with the operational semantics �cf� 	�����

� Assignment and Concurrency

The calculus in the previous section is single threaded and side�e�ect free� This is inadequate to model
the behavior of a collection of agents that execute concurrently and interact �e�g�� via a shared store or �le
system�� To model such a system� we extend the basic calculus with assignment �via ML�style reference
cells�� generalize evaluation to a multi�process setting� and add a �spawn� operation to create new processes�

We �rst extend the de�nition of basic values bv and expressions e by

bv ��� � � � j ls

e ��� � � � j �refs e�� j �write e e�� j �read e�r j �spawn e��





where ls is a location �we assume an in�nite sequence of locations at each type s� whenever a new location
is needed� we use the next available location in the sequence�� We modify the de�nition of types t to include
reference types and also to change arrow types so that they carry a latent �e�ect� ir� representing a lower
bound on the security of cells that may be written when the function is executed�

� ��� �r� ir�

t ��� unit j �s� s� j �s� s� j �s
ir

�� s� j �ref s�

We extend evaluation contexts appropriately�

E ��� � � � j �refs E�� j �write E e�r j �write v E�r j �read E�r

Recall that � denotes the bottom �most insecure� security group� Abusing notation� de�ne ir�E� by

ir�E� �

��
�

� if E � 	��
ir t ir� if E � �protectir E�� and ir�E�� � ir�

ir�E�� if� for instance� E � �E� e�r

We use the notation Eir to denote an evaluation context with ir�E� � ir� A state is a �nite partial function
from typed locations ls into values�

The starting point of the operational semantics for the extended calculus is the collection of simple redex
rules given previously in Table �� Again we lift these rules to arbitrary terms via

e� e�

E	e�� E	e��

where E is understood to be the extended de�nition of contexts given above� Using this basic notion of
e� e�� we now de�ne reduction for side�e�ect operations and thread spawning� Speci�cally� Table � de�nes
a reduction relation �e�� � � � � en���� �e��� � � � � e

�

n�k��
��� where � is a state�

Subtyping in the system with e�ects is exactly the same as before� except that the rule for function types
now becomes

� � �� ir� v ir s�� � s� s� � s��

��s�
ir

�� s��� �� � ��s��
ir�

�� s���� �
��

and the rule for reference types is
� � ��

�ref s� �� � �ref s� ���

Note that subtyping on reference types only a�ects top�level security properties� Table � presents the typing
rules for the extended calculus� This type system is essentially the previous system with an e�ect system lay�
ered over the top of it in the style of 	���� This e�ect system tracks potential information leakage�dependency
that may be introduced by reference cells� Each context carries with it a security group ir that is a lower
bound on the security of the reference cells that may be written in that context� as expected� this security
group is carried over onto arrow types�

Analogs of the Subject Reduction Theorem ��� and Progress Theorem ��� can be established for this sys�
tem� the proofs are quite similar to the proofs in the Appendix� Unfortunately� noninterference is problematic
in concurrent setting �see 	�� for a discussion�� Consider a system with two agents A� B and C� and suppose
that there is some variable x that contains information that should be kept secret from agent C� The �rst
agent� A� generates a random number� and puts it into a variable tmp that everyone can read� Agent B waits
for a while and then just copies the contents of x into tmp� Agent C reads tmp and immediately terminates�
Now� although C cannot tell with certainty that it has captured the contents of x or some random garbage�
it clearly �nds out more about x than it should� However� since the possible set of behaviors of C �i�e�� the
possible values C generates� is independent of the initial value of x� the use of equivalence classes would lead
us to the conclusion that this system is secure�

We have not found a satisfactory� general� abstract theorem expressing a noninterference property in the
presence of concurrency� Curiously� though� we expect our lemmas using logical relations to hold in the
setting with side e�ects and concurrency� and are exploring notions of noninterference using logical relations�

�



Table �� Operational Semantics for E�ects�

e� e�

�� � � � Eir� �e	� � � � � ��� �� � � � Eir� �e�	� � � � ���

�� � � � Eir� ��spawn e��	� � � � � �� � �� � � � �protectir� e�� Eir� ����	� � � � ���
�� � � � Eir� ��refs v��	� � � � � �� � �� � � � Eir� �ls�	� � � � ���l

s �� v � ir�	� if ls �� dom���
�� � � � Eir� ��write ls�r�ir� v�r� 	� � � � ��� � �� � � � Eir� �v	� � � � ���ls �� v � ir�	� if r v r�

�� � � � Eir� ��read ls�r�ir��r� 	� � � � ��� � �� � � � Eir� ���ls� � ir	� � � � ��� if r v r�

Table �� Typing Rules for E�ects�

	Sub�
� �ir e � s s � s�

� �ir e � s�

	V ar� �� x � s �ir x � s

	Unit� � �ir ��� � �unit� ��

	Lam�
�� x � s� �ir� e � s�

� �ir ��x � s�� e�� � �s�
ir�

�� s�� ��

	Pair�
� �ir e� � s� � �ir e� � s�
� �ir he�� e�i� � �s� � s�� ��

	Inj�
� �ir e � si

� �ir �inji e�� � �s� � s�� ��

	App� � �ir� e � �s�
ir��

�� s�� �r� ir�� � �ir� e� � s�
� �ir� �e e��r� � s� � ir

r v r�� �ir� t ir� v ir��

	Proj�
� �ir� e � �s� � s�� �r� ir��
� �ir� �proji e�r� � si � ir

r v r�

	Case�
� �ir� e � �s� � s�� �r� ir�� �� x � si �ir�� ei � s

� �ir� �case e of inj��x�� e� j inj��x�� e��r� � s � ir
r v r�� �ir� t ir� v ir��

	Protect�
� �ir�� e � s

� �ir� �protectir e� � s � ir
r v r�� �ir� t ir� v ir��

	Spawn�
� �ir� e � s

� �ir� �spawn e�� � �unit� ��

	Loc� � �ir� ls� � �ref s� ��

	Ref �
� �ir� e � s

� �ir� �refs e�� � �ref s� ��
�s � ir�� � s

	Assign�
� �ir� e� � �ref s� �r� ir�� � �ir� e� � s

� �ir� �write e� e��r� � s
r v r�� �s � ir�� � s

	Deref �
� �ir� e � �ref s� �r� ir��
� �ir� �read e�r� � s � ir

r v r�

�



� Integrity

We now sketch how to add integrity to the basic calculus of Section � and the extended calculus of Section 
�
using the concepts of creators and indirect creators� Recall that creators track the agents that directly built
the value� whereas indirect creators track the agents that may have in�uence over the eventual choice of a
value�

Creators and indirect creators are drawn from the same underlying hierarchy of security groups as readers
and indirect readers� High integrity is modeled by points near the top of the hierarchy� low integrity by points
near the bottom� But there is a twist with respect to subtyping� Recall that for readers� one may always
restrict access to a value� e�g�� change the reader annotation to a higher security group� For creators� it works
just the opposite way� one may always weaken the integrity of a value� e�g�� change the creator annotation
to a lower security group� More formally� security properties now incorporate creator and indirect creator
information�

� ��� �r� ir� c� ic��

The variables r� ir� c and ic range over security groups� we assume that ic v c� Subsumption for � becomes

�r� ir� c� ic� � �r�� ir�� c�� ic�� i� r v r�� ir v ir�� c� v c� and ic� v ic

which formalizes the intuition that one may always weaken the integrity of a value�
The operational semantics must now track indirect creators� For example� the rule for case becomes

�case �injj v�r�ir�c�ic of inj��x� � e� j inj��x�� e��r� � �protectir�icur� ej 	v�x�� if r v r�

Note that the protect operation must take into account indirect creators� The rule registers the reader r�

of the injected value as an indirect creator of the result of the computation� Typing rules that involve the �
operation must be modi�ed� For example� the case rule becomes

	Case�
� � e � �s� � s�� �r� ir� c� ic�� �� x � si � ei � s

� � �case e of inj��x�� e� j inj��x�� e��r� � s � �ir� ic u r��
r v r�

We have proven Subject Reduction and Progress Theorems analogous to Theorems ��� and ��� for this
system� We can also prove a security result for indirect creators that is analogous to Theorem ��
�

Theorem ��� �Noninterference� Suppose 	 � e � �t� �r� ir��� 	 � C	e� � �t�� �r�� ir���� t� is a transparent

ground type and ir �v ir�� If e� is an expression where 	 � e� � �t� �r� ir��� then C	e� 
 C	e���

Intuitively� if the indirect creators of the subexpression e do not include that of the entire computation� then
e cannot in�uence the result of the computation� The proofs of these results use the techniques established
in the Appendix�

Creators and indirect creators can also be added to the calculus of Section 
� Recall that in the case
of readers� the type system must guarantee that information does not leak out via side e�ects� A similar
property must be guaranteed in the case of creators� we must make sure that indirect creators of the
computation are carried over onto the values written in reference cells� Therefore� judgements � �ir e � s
must be changed to � �ir�ic e � s� where ic is a lower bound on the integrity of values that may be written
to reference cells in the evaluation of e� As before� indirect information is placed over � to represent the
latent e�ects of a computation� The type�checking rules for abstraction and application thus become

	Lam�
�� x � s� �ir��ic� e � s�

� �ir ��x � s�� e�� � �s�
ir��ic�

�� s�� ��

	App� � �ir� e � �s�
ir���ic��

�� s�� �r� ir�� � �ir� e� � s�
� �ir� �e e��r� � s� � �ir� ic u r��

r v r�� �ir� t ir� v ir��� ic�� v �ic� u ic�

We have proven Subject Reduction and Progress Theorems for this system� the proofs follow the structure
of the proofs in the Appendix for the pure case�

�



� Discussion

Our work is not the �rst to use a programming language framework for security� The interpreter for Perl ����
for instance� can be put into a special mode which tracks information �ow and rejects programs that may
reveal secret information� Type systems have been used to statically check programs before they are run�
Recent work by Volpano� Smith and Irvine reformulates Denning�s framework as a type system in order to
reason about its soundness 	���� and Abadi�s type system for the Spi calculus may be used to reason about
protocols 	�� ��� Type systems have been also used for the related problem of reasoning about trustworthiness
of data� For instance� 	��� introduces a calculus in which one can explicitly annotate expressions as trusted
or distrusted and check their trust�distrust status� this system enforces consistent use of these annotations�
although one can freely coerce from trusted to distrusted and vice�versa� Concurrency issues were �rst
addressed by 	��� although there appear to be some di�culties with that approach�see 	����

The main novelties of our work are the use of both access protection and information �ow� and the
incorporation of higher�order functions and data structures� these are both essential for a development of
practical languages that provide mechanisms for security� This introduces a number of new technical issues
that have not been previously addressed�

The system we have presented is vulnerable to timing attacks� For example we could write

let val t� � �int	 L	 L� � getTime��

val tmp � if secureBool � �bool	 H	 H� then longComputation else shortComputation

val t� � �int	 L	 L� � getTime��

val insecureBool � �bool	 L	 L� � ��t�  t�� � timeForShortComputation�

in insecureBool end

where getTime gets the current time� and longComputation is some computation that takes longer than
shortComputation� This program allows us to leak information about the secure value secureBool to
the low security value insecureBool� In short� our type system does not protect the execution time of
computations� Depending on the latency and accuracy of getTime and scheduling issues� this could reliably
leak information at a rate of perhaps � bit�ms  � bit�sec� This would be disastrous for certain applications�
e�g�� we could leak a ����bit cryptographic key in the order of seconds�

This bandwidth of timing attacks could be reduced by restricting access and accuracy of getTime� Alter�
natively� we could change the type system� The key type rule is one for case statements� where the security
context �the subscript on � in Table �� is increased as we move into the body of the case statement to re�ect
the security of the tested expression� We could constrain these contexts to be equal �i�e�� so that we cannot
look at a high security value unless we are already in a high security context�� and only allow contexts to be
increased in security at spawn expressions� The idea is that if we are in a low security context and want to
do some computation with a high security value� then we must �rst spawn o� a high security process for this
purpose� We can still leak information between processes by taking more or less of the processor�s resources
�time or space� according to some high security value� but we have signi�cantly reduced the bandwidth of
these attacks� A more speculative approach involves forcing the arms of a case statement to take the same
time and space resources by adding timeout mechanisms and various padding operations� An important
area of future work involves studying the tradeo�s of implementation costs and programming inconvenience
versus reduction in timing attack vulnerability�

As with many other security systems� our approach relies on a TCB �trusted computer base�� in our case
trusted type�checking�compilation�runtime infrastructure� A failure in any of these components potentially
breaks the entire security system� It would be possible to factor out some of the critical components by moving
to a bytecode�bytecode�veri�er organization ��a la Java�� although the bene�ts of doing so are unclear�

We view the SLam calculus as a �rst step towards providing a language basis for secure systems pro�
gramming� It deals with the essence of computing with secure information� but a number of important issues
remain� First� the type system we have presented is monomorphic� Clearly this is too restrictive� we need to
be able to write code that behaves uniformly over a variety of security groups �e�g�� in writing a generic string
editing�searching package�� We are currently investigating two approaches to this problem� parametric se�
curity types and a notion of �type dynamic� for security types� The former involves bounded quanti�cation�
and it is not clear we can compute concise� intuitive representations of types� the latter involves runtime
overheads�

��



Second� our type system is static� but the security of objects changes dynamically� For instance� in a
�le system� the �les that one can read today will probably be di�erent from those one can read tomorrow�
How can we accommodate new �les� new objects� new cells� new agents� changing security groups� etc� We
plan to address these issues using a dynamically typed object manager� The basic idea is that access to
shared objects is via the object manager� although each program is statically typed� a program�s interface to
the object manager is via dynamic types �at runtime� a dynamically typed object returned from the object
manager must be unpacked and its security properties checked before the raw object it contains is passed to
the internals of the program��

Third� any practical language based on the SLam calculus must provide ways to reduce the amount of
type information that must be speci�ed by a programmer� the core SLam calculus is an explicitly typed
calculus� Can we perform e�ective type reconstruction� What kinds of language support should we provide�
For example� it would be useful to introduce a statically scoped construct that de�nes a default security
group for all objects created in its scope� i�e�� like UNIX�s umask�

We are investigating these issues in the context of an implementation of our type system for Java� While
many of the appropriate typing rules for Java can be adapted easily from the SLam calculus� some new
issues arise from exceptions� break� continue� return� and instanceOf� The implementation is joint work
with Philip Wickline�

Acknowledgements� We thank Kathleen Fisher� Geo�rey Smith� Ramesh Subrahmanyam� Dennis Volpano�
and Philip Wickline for helpful comments�

References

	�� M� Abadi� Secrecy by typing in security protocols� In Proceedings of TACS� ����� To appear�

	�� M� Abadi and A� D� Gordon� A calculus for cryptographic protocols� The spi calculus� In Proceedings

of the �th ACM Conference on Computer and Communications Security� pages 
 ��� �����

	
� G� Andrews and R� Reitman� An axiomatic approach to information �ow in programs� ACM Trans�

Programming Languages and Systems� ������ �� �����

	�� J� Ban!atre� C� Bryce� and D� L� Met"ayer� Compile�time detection of information �ow in sequential
programs� In European Symposium on Research in Computer Security� number ��� in Lect� Notes in
Computer Sci�� pages �� �
� Springer�Verlag� �����

	�� D� Denning� Secure Information Flow in Computer Systems� PhD thesis� Purdue University� �����

	� D� Denning� A lattice model of secure information �ow� Commun� ACM� �������
 ���� ����

	�� D� Denning and P� Denning� Certi�cation of programs for secure information �ow� Commun� ACM�
��������� ��
� �����

	�� M� Felleisen� The theory and practice of �rst�class prompts� In Conference Record of the Fifteenth

Annual ACM Symposium on Principles of Programming Languages� pages ��� ���� ACM� �����

	�� D� McCullough� Noninterference and the composability of security properties� In ���� IEEE Symposium

on Security and Privacy� pages ��� ��� �����

	��� R� Milner� M� Tofte� and R� Harper� The De�nition of Standard ML� MIT Press� �����

	��� J� C� Mitchell� Foundations for Programming Languages� MIT Press� ����

	��� J� Palsberg and P� #rb$k� Trust in the ��calculus� In Proceedings of the ���	 Static Analysis Symposium�
number ��
 in Lect� Notes in Computer Sci� Springer�Verlag� �����

	�
� G� D� Plotkin� A structural approach to operational semantics� Technical Report DAIMI FN���� Aarhus
Univ�� Computer Science Dept�� Denmark� �����

��



	��� G� D� Plotkin� �Towards a� logic for computable functions� Unpublished manuscript� CSLI Summer
School Notes� �����

	��� J� C� Reynolds� Types� abstraction and parametric polymorphism� In R� E� A� Mason� editor� Informa�

tion Processing �
� pages ��
 ��
� North Holland� Amsterdam� ���
�

	�� J� G� Riecke and A� Sandholm� A relational account of call�by�value sequentiality� In Proceedings�

Twelfth Annual IEEE Symposium on Logic in Computer Science� pages ��� ��� �����

	��� J��P� Talpin and P� Jouvelot� Polymorphic type� region and e�ect inference� Journal of Functional

Programming� ����� ���� �����

	��� D� Volpano� G� Smith� and C� Irvine� A sound type system for secure �ow analysis� Journal of Computer

Security� ��
��� ��� ����

A Proofs for Pure Functional Language with Secrecy

A�� Basic Facts

Proposition A�� Suppose s� � s� and ir� v ir�� Then s� � ir� � s� � ir��

Proposition A�� For any secrecy property � and type s�

�� � � ir � ir� � � � ir� � ir�

�� s � ir � ir� � s � ir� � ir�

A�� Substitution Lemma

Lemma A�� If � � v � s� and �� x � s� � e � s� then � � e	v�x� � s�

Proof� By induction on the proof of �� x � s� � e � s� We consider a few of the most representative cases and
leave the others to the reader�

�� �� x � s� � y � s where y �� x� Obvious�

�� �� x � s� � x � s where s � s�� Since e	v�x� � v� we are done�


� �� x � s� � ��y � s�� e
��� � �s� � s�� ��� where �� x � s�� y � s� � e� � s� and y �� x� By induction�

�� y � s� � e�	v�x� � s�� Thus� by rule 	Lam��

� � ��y � s�� e
���	v�x� � s

as desired�

This completes the induction and hence the proof�

A�� Subject Reduction Theorem

Lemma A�� Suppose 	 � ea � sa� and ea � eb� Then 	 � eb � sa�

Proof� By cases depending on the reduction rule used�

�� ���x � s�� e�r�ir v�r� � �protectir� e	v�x��� By assumption� 	 � ea � sa� Since ea is ���x � s�� e�r�ir v�r� �
this derivation must end in a �possibly empty� series of 	Sub� applications that are immediately preceded
by an application of 	App�� Hence there exists some s�a � sa and a derivation 	 � ea � s�a whose last
rule application is 	App�� By inspection of 	App�� there exist derivations for�

	 � ��x � s�� e�r�ir � �s
�
� � s��� r

��� ir���
	 � v � s��

where r�� v r� and s�� � ir
�� � s�a � sa

��



The derivation 	 � ��x � s�� e�r�ir � �s�� � s��� r
��� ir��� must end in a �possibly empty� series of 	Sub�

applications that are immediately preceded by an application of 	Abs�� Hence there exists an s� where
s� � �s�� � s��� r

��� ir���� and a derivation 	 � ��x � s�� e�r�ir � s� whose last rule is 	Abs�� By the 	Abs�
rule� there is a derivation�

x � s� � e � s�
where s� � �s� � s�� r� ir�

Now� s� � �s� � s�� r� ir� � �s�� � s��� r
��� ir��� implies that�

s�� � s�
s� � s��
ir v ir��

Combining s�� � s� with 	 � v � s�� implies 	 � v � s� by the 	Sub� rule� Hence we have x � s� � e � s�
and 	 � v � s�� and so by the Substitution Lemma�

	 � e	v�x� � s��

By the 	Protect� rule� 	 � �protectir e	v�x�� � s�� ir� Now� s� � s�� and ir v ir�� and so by Proposition
A���

s� � ir � s�� � ir
�� � s�a � sa

Hence� by �Sub�� 	 � �protectir e	v�x�� � sa�

�� �proji hv�� v�i�r�ir��r� � �protectir vi�� where r v r�� Since 	 � ea � sa� there must exist s�a � sa and

a derivation 	 � �proji hv�� v�i�r�ir��r� � s�a whose last rule application is 	Proj�� By the 	Proj� rule�

	 � hv�� v�i�r�ir� � �s
�
� � s��� �r

��� ir����

where s�i � ir
�� � s�a � sa and r�� v r�

Since 	 � hv�� v�i�r�ir� � �s
�
� � s��� �r

��� ir����� there is a derivation of 	 � hv�� v�i�r�ir� � s� ending in a use

of the �Pair� rule� such that s� � �s�� � s��� �r
��� ir����� From the �Pair� rule we have derivations�

	 � v� � s�
	 � v� � s�

where s� � �s� � s�� �r� ir��

and so by the 	Protect� rule� 	 � �protectir vi� � si�ir� Since s� � �s��s�� �r� ir�� � �s���s
�
�� �r

��� ir�����

s� � s��
s� � s��
ir v ir��

Hence si � ir � s�i � ir
�� � s�a � sa by Proposition A��� and so 	 � �protectir vi� � sa by �Sub��


� �case �injj v�r�ir of inj��x� � e� j inj��x� � e��r� � �protectir ej 	v�x��� where r v r�� Since 	 �
ea � sa� there must exist s�a � sa and a derivation 	 � �case �injj v��r�ir� of inj��x� � e� j inj��x� �
e��r� � s�a� whose last rule application is 	Case�� By the 	Case� rule� there is a derivation�

	 � �injj v�r�ir � �s�� � s��� �r
��� ir����

x � s�i � ei � s
where s � ir�� � s�a � sa and r�� v r�

Hence� there is a derivation 	 � �injj v��r�ir� � s� whose last rule is 	Inj� and where s� � �s�� �
s��� �r

��� ir����� By the 	Inj� rule� there are derivations�

	 � v � sj
where s� � �s� � s�� �r� ir��

�




Since s� � �s� � s�� r� ir� � �s�� � s��� �r
��� ir�����

s� � s��
s� � s��
ir v ir��

Now� 	 � v � sj and sj � s�j implies 	 � v � s�j � Hence� we have x � s�j � ej � s and 	 � v � s�j � and so by
the Substitution Lemma

	 � ej 	v�x��

By the 	Protect� rule� 	 � �protectir ej 	v�x�� � s � ir� Now� ir v ir�� and so by Proposition A���

s � ir � s � ir�� � s�a � sa

Hence� by �Sub�� 	 � �protectir ej 	v�x�� � sa�

�� �protectir ����� ����ir � Since 	 � ea � sa� there exists s�a � sa and a derivation 	 � �protectir ���� �
s�a whose last rule is 	Protect�� Hence� there is derivation

	 � ��� � s
where s � ir � s�a � sa

The derivation of 	 � ��� � s must consist of an application of the 	Unit� rule followed by some number
of applications of 	Sub�� Hence �unit� �� � s� Now� applying the 	Unit� rule to ����ir gives�

	 � ����ir � �unit� � � ir�

Since �unit� ��ir� � �unit� ���ir and �unit� �� � s� it follows from Proposition A�� that �unit� ��ir� �
s � ir � s�a � sa� Hence� 	 � ����ir � sa by 	Sub��

�� �protectir hv�� v�i�� � hv�� v�i��ir� Since 	 � ea� there exists s�a � sa and a derivation 	 �
�protectir hv�� v�i�� � s

�
a whose last rule is 	Protect�� and so�

	 � hv�� v�i� � s
where s � ir � s�a � sa

Since 	 � hv�� v�i� � s� there exists s� � s and a derivation 	 � hv�� v�i� � s� whose last rule is 	Pair��
Hence

	 � v� � s�
	 � v� � s�

where s� � �s� � s�� ��

Now� applying rule 	Pair� to hv�� v�i��ir gives�

	 � hv�� v�i��ir � �s� � s�� � � ir�

Since �s� � s�� � � ir� � �s� � s�� �� � ir � s� � ir� and s� � s� Proposition A�� implies �s� � s�� � � ir� �
s � ir � s�a � sa� Hence 	 � hv�� v�i��ir � sa by 	Sub��

� �protectir �inji v���� �inji v���ir � Similar to the previous case�

�� �protectir ��x � s�� e���� ��x � s�� e���ir� Similar to the previous case�

�� ��f � s� e� � e	��x � s�� ���f � s� e� x�r��r�ir��f �� where s � �s� � s�� �r� ir��� Simple and hence omit�
ted�

This concludes the case analysis and hence the proof�

Theorem A�� �Subject Reduction� Suppose 	 � e � s and e� e�� Then 	 � e� � s�

Proof� Note that e � E	e��� where e� � e� via one of the rules in Table �� and e� � E	e��� A simple
induction on evaluation contexts� using Lemma A��� completes the proof�

��



A�� Progress Theorem

Theorem A�	 �Progress� Suppose 	 � e � s and e is not a value� Then there is a reduction e� e��

Proof� Suppose� by way of contradiction� that there is no reduction of e� Then it must be the case that
e � E	e��� 	 � e� � s� for some s�� and e� has one of the following forms�

�� e� � �v v��r�

�� e� � �proji v�r�


� e� � �case v of inj��x�� e� j inj��x�� e��r�

We consider the �rst case and leave the others to the reader� Since e� is well�typed�

s�� � s�
	 � �v v��r � s

�
�

	 � v � �s� � s��� �r�� ir���
	 � v � s�

and r� v r� Note that v must have the form ��x � s�� e
�
���r��ir��� since it has a functional type �this can be

seen by an easy induction on typing derivations��
This gives us enough room to complete the proof� By rule 	Abs�� we know

�s� � s��� �r�� ir��� � �s� � s��� �r�� ir���
	 �ir ��x � s�� e

�
���r��ir�� � �s� � s��� �r�� ir���

x � s� �ir� e�� � s
�
�

It follows that r� v r� v r� and so the application reduction rule applies� This contradicts the initial
assumption that there is no reduction of e� so there must be a reduction of the term�

A�� Noninterference

We can assign a standard denotational semantics to the language by adopting the partial function model
of 	���� De�ne the meaning of a type expression s� denoted 		s��� by

		�unit� �r� ir���� � unit

		�s� t� �r� ir���� � �		s�� � 		t���

		�s� t� �r� ir���� � �		s��� 		t���

		�s� t� �r� ir���� � �		s���p 		t���

where �D �p E� is the set of partial continuous functions from D to E� Note that this semantics ignores
the security properties�

The meaning of terms is a partial function� If � � x� � t�� ���� xn � tn is a typing context then 		��� �
		t���� � � �� 		tn��� �The order is not important here� as we could rely on some �xed ordering of xi � ti pairs��
In the case that � is empty� 		��� is the unit object unit� For an environment �  j		���j� write ��x� for the
projection to the component corresponding to variable x� and �	x �� d� for the environment in which the
x component is extended �or overwritten� to d� The de�nition of the meaning function on terms� like that
of types� ignores the security properties� similar de�nitions may be found in� say� 	��� ��� The model is
adequate for observing the �nal answers of programs�

Theorem A�
 �Plotkin� For any typing judgement 	 � M � s and any environment �� 			 � M � s��� is

de�ned i� M �� v for some value v�

Our proof of noninterference uses logical relations �see 	��� for other uses of logical relations�� De�ne R
to be a family of relations indexed by secure types and indirect readers ir where

�� If s � �t� �r� ir�� and ir �v ir�� then Rs
ir� � f�d� e� j d� e  		s��g�

��



�� If t � �unit� �r� ir�� and ir v ir�� then Rs
ir� � f�����g�


� If t � �s� � s�� �r� ir�� and ir v ir�� then Rs
ir� � f�inji�d�� inji�e�� j �d� e�  Rsi

ir� � i � �� �g�

�� If s � �s� � s�� �r� ir�� and ir v ir�� then Rs
ir� � f�hd�� e�i� hd�� e�i� j �di� ei�  Rsi�ir

ir� g�

�� If s � �s� � s�� �r� ir�� and ir v ir�� then Rs
ir� � f�f� g� j if �d� e�  Rs�

ir� � then �f�d�� g�e��  Rs��ir
ir� g�

Here� �f�d�� g�e��  Rs
ir� means that if f�d� and g�e� are de�ned� then �f�d�� g�e��  Rs

ir� � Intuitively� the ir�

index speci�es the secrecy group of an indirect reader of group ir�� When the secrecy group ir� is not above
the group of the type itself� the indirect reader does not have permission to �nd out any information about
the value�

Proposition A�� �� Each Rs
ir is directed complete� i�e�� if f�di� ei� j i  Ig � Rs

ir is a directed set� then

�
F
di�
F
ei�  Rs

ir�

�� If s � s�� then Rs
ir � Rs�

ir�

Proof� By induction on types�

Theorem A�� Suppose � � e � s and �� ��  		���� Suppose that for all x � s�  �� ���x�� ���x��  Rs�

ir� � Then

�		� � e � s���� 		� � e � s�����  Rs
ir� �

Proof� By induction on the proof of � � e � s�

�� �� x � s � x � s� Follows easily from the hypothesis�

�� � � ��� � �unit� ��� Trivial�


� � � ��x � s�� M�� � �s� � s�� ��� where �� x � s� � M � t� Suppose � � �r� ir� and �d� e�  Rs�
ir� � By

induction�
�		�� x � s� �M � s����	x �� d�� 		�� x � s� �M � s����

�	x �� e��  Rs�
ir� �

By Proposition A���

�		�� x � s� �M � s����	x �� d�� 		�� x � s� �M � s����
�	x �� e��  Rs��ir

ir� �

Note that
		�� x � s� �M � s����	x �� d� � 		� � ��x � s�� M�� � �s� � s�� ����� �d�

and similarly for the other expression� Thus�

�		� � ��x � s�� M�� � �s� � s�� ������ 		� � ��x � s�� M�� � �s� � s�� �����
��  R

�s��s����
ir� �

�� � � �M N�r� � s� � ir� where � � M � �s� � s�� �r� ir��� � � N � s�� and r v r�� Let � � �r� ir�� By
induction�

�f� g� � �		� �M � �s� � s�� ������ 		� �M � �s� � s�� �����
��  R

�s��s����
ir�

�d� e� � �		� � N � s����� 		� � N � s����
��  Rs�

ir�

There are two cases�

�a� ir v ir�� Then �f�d�� g�e��  Rs��ir
ir� directly from the de�nition of R

�s��s����
ir� �

�b� ir �v ir�� Suppose s� � �t� �r��� ir����� Note that s� � ir � �t� �r�� t ir� ir�� t ir��� It follows that

�ir�� t ir� �v ir�� and so Rs�ir
ir� is the complete relation� Therefore� �f�d�� g�e��  Rs��ir

ir� �

�



�� � � hM�Ni� � �s� � s�� ��� where � � M � s� and � � N � s�� Let � � �r� ir�� By induction and the
de�nition of R�

�d�� d�� � �		� �M � s����� 		� �M � s����
��  Rs�

ir�

�e�� e�� � �		� � N � s����� 		� � N � s����
��  Rs�

ir�

By Proposition A��� �d�� d��  Rs��ir
ir� and �e�� e��  Rs��ir

ir� � It follows that

�hd�� e�i� hd�� e�i�  R
�s��s����
ir�

as desired�

� � � �proji M�r� � si � ir� where � �M � s� s � �s� � s�� r� ir� and r v r�� By induction�

�d�� d�� � �		� �M � s���� 		� �M � s�����  Rs
ir�

There are two cases�

�a� ir v ir�� If both d� and d� are de�ned� by the de�nition of the relation Rs
ir� � dj � hej � fji for

�e�� e��  Rs��ir
ir� and similarly for �f�� f��� It thus follows that

�		� � �proji M�r� � si � ir���� 		� � �proji M�r� � si � ir���
��  Rsi�ir

ir�

as desired�

�b� ir �v ir�� Suppose si � �t� �r��� ir����� Note that si � ir � �t� �r�� t ir� ir�� t ir��� It follows that

�ir�� t ir� �v ir�� and so Rsi�ir
ir� is the complete relation� Therefore� �proji�d��� proji�d���  Rsi�ir

ir� �

�� � � �inji M�� � �s� � s�� ��� where � �M � si� Let � � �r� ir�� By induction and the de�nition of R�

�d�� d�� � �		� �M � si���� 		� �M � si���
��  Rsi

ir� �

It follows that

�inji�d��� inji�d���  R
�s��s����
ir�

as desired�

�� � � P � s � ir� where P � �caseM of inj��x�� N� j inj��x�� N��r� � � �M � �s� � s�� ��� � � �r� ir��
�� x � si � Ni � s� and r v r�� By induction�

�d�� d�� � �		� �M � �s� � s�� ������ 		� �M � �s� � s�� �����
��  R

�s��s����
ir�

There are two cases to consider�

�a� ir v ir�� If both d�� d� are de�ned� then by the de�nition of R
�s��s����
ir� � each dj � �inji ej� for

some i and �e�� e��  Rsi
ir� � By induction�

�		�� x � si � Ni � s���	x �� e��� 		�� x � si � Ni � s���
�	x �� e���  Rs

ir�

By Proposition A��� �		�� x � si � Ni � s���	x �� e��� 		�� x � si � Ni � s���
�	x �� e���  Rs�ir

ir� � Thus�

�		� � P � s � ir���� 		� � P � s � ir�����  Rs�ir
ir�

as desired�

�b� ir �v ir�� Suppose s � �t� �r�� ir���� Then �irt ir�� �v ir�� and hence Rs�ir
ir� is the complete relation�

Thus�

�		� � P � s � ir���� 		� � P � s � ir�����  Rs�ir
ir�

��



�� � �M � s� where � �M � s� and s� � s� This case follows from the induction hypothesis and the fact
that Rs�

ir� � Rs
ir� � which is part of Proposition A���

��� � � ��f � s� e� � s� where s � �s� � s�� ��� Let g��x� � 		�� f � s � e � s���	f �� x� and g��x� � 		�� f �
s � e � s���	f �� x�� We claim that for all n � �� �gn� ���� g

n
� ����  Rs

ir� � from whence it follows by
Proposition A�� that

�		� � ��f � s� e� � s���� 		� � ��f � s� e� � s�����  Rs
ir� �

Proceed by induction on n� For the base case� it is easy to see that if � is the everywhere unde�ned
function� �g������ g

�
����� � �����  Rs

ir� � For the inductive case� suppose �gn� ���� g
n
� ����  Rs

ir� � If
one is not de�ned� then �gn��

� ���� gn��
� ����  Rs

ir� � If both are de�ned� then

�gn��
� ���� gn��

� ���� � �		�� f � s � e � s���	x �� gn� ����� 		�� f � s � e � s����	x �� gn� �����  Rs
ir�

by induction� which completes the proof of the claim�

This completes the induction and hence the proof�

Suppose s is a type� Then s is transparent at security property � if

�� s � �unit� ��� and �� � ��

�� s � �s� � s�� �
��� �� � �� and s�� s� are transparent at security property ��


� s � �s� � s�� �
��� �� � �� and s�� s� are transparent at security property �� or

�� s � �s� � s�� �
��� �� � �� and s�� s� are transparent at security property ��

s � �t� �� is transparent if s is transparent at ��

Lemma A�� Suppose s � �t� �r� ir�� is a ground type transparent at �r�� ir��� If �f�� f��  Rs
ir� � then f � f ��

Proof� By induction on t� The base case� when t � unit� is obvious� When t � �s� � s�� �r� ir��� since
ir v ir�� it follows from the de�nition of Rs

ir� that fj � �inji ej� for some i and �e�� e��  Rsi
ir� � By induction�

e� � e�� Thus� f� � f��
When t � �s� � s�� �r� ir��� it follows from the de�nition of Rs

ir� that fj � hdj � eji and �d�� d��  Rs��ir
ir�

and �e�� e��  Rs��ir
ir� � Note that s� � ir � �t�� �r�� ir��� � ir � �t�� �r� t ir� ir� t ir�� and similarly for

s� � ir � �t�� �r�� ir��� � ir� Since ir� v ir� �ir� t ir� � ir v ir�� and similarly �ir� t ir� v ir�� Thus� by
induction� d� � d� and e� � e�� which proves that f� � f� as desired�

Theorem A��� �Noninterference� Suppose 	 � e � �t� �r� ir��� 	 � C	e� � �t�� �r�� ir���� t� is a ground�

transparent type� and ir �v ir�� Then for all 	 � e� � �t� �r� ir��� C	e� 
 C	e���

Proof� To simplify notation� let unit stand for the least secure unit type �unit� ������ �with lowest security�
and �� � unit denote the least secure value of type unit� Consider the open term

y � �unit� s� ������ � C	�y� ����� � s
�

It is easy to see that this is a well�formed typing judgement� Consider any 	 � ei � s for i � �� �� Let

di � 			 � ��x � unit� ei������ � �unit� s� ���������

It is easy to show that �d�� d��  R
�unit�s�������
ir� � since ir �v ir�� Let

fi � 		y � �unit� s� ������ � C	�y� ����� � s
���	x �� di��

By Theorem A���

�f�� f��  Rs�

ir� �

If f�� f� are de�ned� then by Lemma A���� f� � f�� When fi is de�ned� it is simple to show that there is a
value vi such that fi � 			 � vi � s

���� Since v� 
 v�� we are done�

��


